

Optimizing quantum circuits with classical thinking

Craig Gidney Google Quantum Al

QPL/MFPS 2018

Goal: explain section 3-D of arXiv:1805.03662

Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity

Ryan Babbush,^{1,*} Craig Gidney,² Dominic W. Berry,³ Nathan Wiebe,⁴ Jarrod McClean,¹ Alexandru Paler,⁵ Austin Fowler,² and Hartmut Neven¹

[...]

...|

Gooale

D. Subsampling the Coefficient Oracle

In this section we introduce a technique for initializing a state with L unique coefficients (provided by a classical database) with a number of T gates scaling as $4L + \mathcal{O}(\log(1/\epsilon))$ where ϵ is the largest absolute error that one can

Key ideas we'll cover

1. Cost of error corrected quantum computation

2. Preparing phase-insensitive superpositions == random sampling

3. Fast proportionate sampling

4. Putting it all together for *savings*!

Part 1 The cost of error corrected quantum computation

Basic error-corrected operations

Quantum AND gate: expensive!

Wildly differing costs

Classical perspective on gate costs

FullAdder isn't even a whole instruction.

Quantum perspective on gate costs

FullAdder takes a half millisecond.

Another cost: reading data under superposition

- RAM takes O(N) space to store.
- N AND gates is expensive, but N logical qubits are even more expensive.
- Instead of storing data in qubits, hardcode it into a circuit ("QROM").
- QROM circuit needs AND gates.

Reading data under superposition: QROM circuit

Iterate over possible index values.

Encode data into presence/absence of CNOT targets.

Reading data under superposition: Expensive!

QROM query over N values: N-1 AND gates

Video games render frames faster than we hope to do QROM reads

Part 2 Preparing quantum states

The Preparation Problem

Given precomputed coefficients for a superposition, prepare such a superposition

$$[a_0, a_1, a_2, \dots, a_{N-1}]$$

$$\downarrow$$

$$a_0|0\rangle + a_1|1\rangle + a_2|2\rangle + \dots + a_{N-1}|N-1\rangle$$

Previous Approach

Set ON-vs-OFF proportion of a qubit just right with a precise rotation.

Conditioned on first qubit, set another qubit's ON-vs-OFF proportion just right.

Etc.

Cost of Previous Approach

Uses N-1 precise rotations.

Cost of precise rotation \approx 12 AND gates. (\approx 50 T gates)

Roughly 3/4 of a second at N=100.

Key insight: sometimes junk is okay

You were asked to prepare a superposition:

$$\sum_{k} a_k |k\rangle$$

But if its usage is insensitive to phase error, you can prepare this instead:

$$\sum_{k} a_k |k\rangle |\text{temp}_k\rangle$$

i.e. just get the probabilities right:

$$\forall k, \langle k | \psi | k \rangle = |a_k|^2$$

Key insight: sometimes junk is okay

Context: prepared superposition is only used as a control

Key insight: sometimes junk is okay

cancels against inverse operations during uncompute

Example: Preparing $\sum_{k=1}^{N} \frac{1}{\sqrt[4]{k}} |k\rangle |\text{temp}_k\rangle$

Step 1: What's the probability distribution?

$$P(k) \propto |a_k|^2 \propto \left|\frac{1}{\sqrt[4]{k}}\right|^2 = \frac{1}{\sqrt{k}}$$

Step 2: Create a classical sampling method.

u = uniform_random() return u**2

S

s,

 $|0\rangle$

10)

 $|0\rangle$

н

Part 3 Sampling hard-coded probability distributions

Fitness proportionate selection

Common step in genetic algorithms

Given: a list of items with fitnesses

Goal: sample items with twice as much fitness twice as often

Common Fitness-Proportionate Selection Methods

https://jbn.github.io/fast_proportional_selection/

	Classical Sampling Cost		
Linear Walk	O(N)		
Bisecting Search	O(lg N)		
Stochastic Acceptance	O(p _{max} N)		

Common Fitness-Proportionate Selection Methods

https://jbn.github.io/fast_proportional_selection/

	Classical Sampling Cost	Quantum Preparation Cost	
Linear Walk	O(N)	O(N lg(1/ε))	
Bisecting Search	O(lg N)	O(N lg(1/ε))	
Stochastic Acceptance	O(p _{max} N)	Not Reversible	

Search trees don't help quantum cost. Under superposition, you must do the operations for **every** path.

Common Fitness-Proportionate Selection Methods

https://jbn.github.io/fast_proportional_selection/

	Classical Sampling Cost	Quantum Preparation Cost	
Linear Walk	O(N)	O(N lg(1/ε))	
Bisecting Search	O(lg N)	O(N lg(1/ε))	
Stochastic Acceptance	O(p _{max} N)	Not Reversible	
Alias Sampling*	O(1)	$O(N + lg(1/\epsilon))$	

*Walker 1974: "New fast method for generating discrete random numbers with arbitrary frequency distributions"

Alias sampling: repacking histograms

Pick initial item uniformly at random, then probabilistically switch to an alternate item.

Repacking costs

Linear time using Vose's algorithm

Doesn't affect runtime of quantum algorithm (classically precomputed)

All approximations happen here. Sampling adds zero additional error!

Part 4 Putting it all together

Using alias sampling to prepare a superposition

Classical Sampling

Quantum Preparation

Cost of alias preparation

Preparing a uniform superposition costs O(lg N + lg $1/\epsilon$)

QROM lookup uses N-1 AND gates (dominant cost)

Compare+swap costs O(lg N + lg $1/\epsilon$)

Runs at ≈20Hz given N=100.

(an order of magnitude faster)

Part 5 Wrap-up

What we covered: section 3-D of arXiv:1805.03662

Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity

Ryan Babbush,^{1,*} Craig Gidney,² Dominic W. Berry,³ Nathan Wiebe,⁴ Jarrod McClean,¹ Alexandru Paler,⁵ Austin Fowler,² and Hartmut Neven¹

[...]

...|

Google

D. Subsampling the Coefficient Oracle

In this section we introduce a technique for initializing a state with L unique coefficients (provided by a classical database) with a number of T gates scaling as $4L + \mathcal{O}(\log(1/\epsilon))$ where ϵ is the largest absolute error that one can

Preparation is a small part of a larger algorithm

Estimated costs of the overall algorithm

$\operatorname{problem}$		physical qubits		execution time (hours)	
System	${\cal N}$ Spin-Orbitals	$p = 10^{-3}$	$p = 10^{-4}$	$p = 10^{-3}$	$p = 10^{-4}$
Hubbard model	72	1.7×10^6	$5.3 imes 10^5$	4.6	2.6
Hubbard model	128	2.4×10^6	7.8×10^5	15	8.4
Hubbard model	200	3.8×10^6	1.0×10^6	40	21
Hubbard model	800	1.5×10^7	4.2×10^6	6.7×10^2	3.7×10^2
Electronic structure	54	1.7×10^6	4.7×10^5	0.85	0.44
Electronic structure	128	2.9×10^6	9.5×10^5	10	5.7
Electronic structure	250	5.1×10^6	1.4×10^{6}	58	30
Electronic structure	1024	2.3×10^7	5.6×10^6	2.8×10^3	1.4×10^3

Contrast with previous work*, which had:

- Execution times in months

Google

- Using hundreds of millions of physical qubits
- Assuming 10 **nanosecond** T gates instead of 150us T gates

*Reiher et al: "Elucidating reaction mechanisms on quantum computers"

Key Takeaways

- Quantum algorithms start with a constant factor penalty of a billion (if not more).

- When a quantum subroutine is phase-insensitive, try porting classical methods.

- Random sampling methods seem to port particularly well.

- Alias sampling dominates bisecting search sampling yet is less well known.

Thanks for listening!

