
Optimizing quantum circuits
with classical thinking
Craig Gidney
Google Quantum AI

QPL/MFPS 2018

Goal: explain section 3-D of arXiv:1805.03662

[...]

[...]

https://arxiv.org/abs/1805.03662

Key ideas we'll cover

1. Cost of error corrected quantum computation

2. Preparing phase-insensitive superpositions == random sampling

3. Fast proportionate sampling

4. Putting it all together for savings!

Part 1
The cost of error corrected quantum

computation

"""Real world""" parameters: dcode≈20, tcycle≈1us
9 40

9

40 Area: 2401 qubits

25us

2.5d
qubits

2.5d
qubits

time: 1.25d cycles

Basic error-corrected operations

this space
intentionally
left blank

initialization: cheap measurement: cheap

NOT gate: free Controlled-NOT: cheapSqrt(NOT) gate: cheap

Time

Not so cheap: Sqrt(Sqrt(NOT))

T state factory:

Time ≈ 150us

output

 Footprint
≈150K physical qubits

noisy T state injections

Quantum AND gate: expensive!

150us + 150us + 150us + 150us = 0.6ms

OR, NAND, NOR, etc
are similarly expensive.

Wildly differing costs

Classical perspective on gate costs Quantum perspective on gate costs

FullAdder takes a half millisecond.FullAdder isn't even a whole instruction.

Another cost: reading data under superposition

- RAM takes O(N) space to store.

- N AND gates is expensive, but N logical qubits are even more expensive.

- Instead of storing data in qubits, hardcode it into a circuit ("QROM").

- QROM circuit needs AND gates.

Reading data under superposition: QROM circuit

Encode data into
presence/absence of
CNOT targets.

Iterate over possible
index values.

Reading data under superposition: Expensive!

Video games render
frames faster than we hope
to do QROM reads

Note: uncomputing AND is ~cheap

QROM query over N
values: N-1 AND gates

+3
+1

+2
+1

total=7N=8

Part 2
Preparing quantum states

The Preparation Problem
Given precomputed coefficients for a superposition, prepare such a superposition

Previous Approach
Set ON-vs-OFF proportion of a qubit just right with a precise rotation.

Conditioned on first qubit, set another qubit's ON-vs-OFF proportion just right.

Etc.

Cost of Previous Approach

Uses N-1 precise rotations.

Cost of precise rotation ≈ 12 AND gates. (≈50 T gates)

Roughly 3/4 of a second at N=100.

You were asked to prepare a superposition:

But if its usage is insensitive to phase error, you can prepare this instead:

i.e. just get the probabilities right:

Key insight: sometimes junk is okay

Key insight: sometimes junk is okay
Context: prepared superposition is only used as a control

Key insight: sometimes junk is okay

entanglement

phase error cancels against
inverse operations
during uncompute

Example: Preparing

Step 1: What's the
probability distribution?

Step 2: Create a
classical sampling
method.

Step 3: Quantum-ify.

uniform sample

uniform superpositionu = uniform_random()

return u**2

Part 3
Sampling hard-coded probability distributions

Common step in genetic algorithms

Given: a list of items with fitnesses

Goal: sample items with twice as much fitness twice as often

Fitness proportionate selection

a b c ed

fd=1

fe=5

fc=3

fb=4

fa=7

0 20

fd=1 fe=5fc=3fb=4fa=7

Common Fitness-Proportionate Selection Methods
https://jbn.github.io/fast_proportional_selection/

Classical Sampling Cost

Linear Walk O(N)

Bisecting Search O(lg N)

Stochastic Acceptance O(pmax N)

0 20

fd=1 fe=5fc=3fb=4fa=7

https://jbn.github.io/fast_proportional_selection/

Common Fitness-Proportionate Selection Methods
https://jbn.github.io/fast_proportional_selection/

Classical Sampling Cost Quantum Preparation Cost

Linear Walk O(N) O(N lg(1/ε))

Bisecting Search O(lg N) O(N lg(1/ε))

Stochastic Acceptance O(pmax N) Not Reversible

Search trees don't help quantum cost. Under superposition, you must
do the operations for every path.

https://jbn.github.io/fast_proportional_selection/

Common Fitness-Proportionate Selection Methods
https://jbn.github.io/fast_proportional_selection/

Classical Sampling Cost Quantum Preparation Cost

Linear Walk O(N) O(N lg(1/ε))

Bisecting Search O(lg N) O(N lg(1/ε))

Stochastic Acceptance O(pmax N) Not Reversible

Alias Sampling* O(1) O(N + lg(1/ε))

*Walker 1974: "New fast method for generating discrete
random numbers with arbitrary frequency distributions"

https://jbn.github.io/fast_proportional_selection/

Alias sampling: repacking histograms

0

0

0

0

1

1

1

1

2

2

2

4

4

0

3

4

4

4

0

0

0

0

0

0

0

1

1

1

1

2

2

2

4

4

4

4

0

0

4

3

Pick initial item uniformly at
random, then probabilistically
switch to an alternate item.

How to repack a histogram

0

0

0

0

0

1

1

1

1

2

2

2

4

4

4

4

0

0

4

3

Average

How to repack a histogram

0

0

0

0

0

1

1

1

1

2

2

2

4

4

4

4

0

0

4

3

S
O
L
V
E
D

Average

How to repack a histogram

0

0

0

0

0

1

1

1

1

2

2

2

4

4

4

4

0

0

4

3

S
O
L
V
E
D

too small

too large

Average

How to repack a histogram

0

0

0

0

0

1

1

1

1

2

2

2

4

4

4

4

0

0

4

3

S
O
L
V
E
D

top up by
transferring

Average

How to repack a histogram

0

0

0

0

0

1

1

1

1

3

3

3

4

4

4

4

0

0

4

3

S
O
L
V
E
D

S
O
L
V
E
D

Average

How to repack a histogram

0

0

0

0

0

1

1

1

1

3

3

3

4

4

0

0

3

S
O
L
V
E
D

S
O
L
V
E
D

4

4

4
Average

It's okay to undershoot
the average when
donating

How to repack a histogram

0

0

0

0

0

1

1

1

1

3

3

3

4

4

0

0

2

S
O
L
V
E
D

S
O
L
V
E
D

4

4

4
S
O
L
V
E
D

Average

How to repack a histogram

0

0

0

0

1

1

1

1

3

3

3

4

4

0

2

S
O
L
V
E
D

S
O
L
V
E
D

4

4

4
S
O
L
V
E
D

0

0
Average

How to repack a histogram

0

0

0

0

1

1

1

1

3

3

3

4

4

0

2

S
O
L
V
E
D

S
O
L
V
E
D

4

4

4
S
O
L
V
E
D

0

0
S
O
L
V
E
D

Average

S
O
L
V
E
D

Repacking costs

Linear time using Vose's algorithm

Doesn't affect runtime of quantum algorithm (classically precomputed)

All approximations happen here. Sampling adds zero additional error!

0
0

0
0

1
1

1
1

2
2
2

4
4

0

3
4
4
4

0
0

0
0

0
0

0

1
1

1
1

2
2
2

4
4

4
4

0
0

4

3

O(N)

Part 4
Putting it all together

Using alias sampling to prepare a superposition
Classical Sampling

def alias_sample(alternates,
 keep_weights,
 precision):

 # Pick an item uniformly at random.
 n = len(alternates)
 k = randint(n)

 # Look up alternate item and keep chance.
 alt = alternates[k]
 keep = keep_weights[k]

 # Potentially switch to alternate item.
 threshold = randint(2**precision)
 kept = threshold < keep
 return k if kept else alt

Quantum Preparation

Preparing a uniform superposition costs O(lg N + lg 1/ε)

QROM lookup uses N-1 AND gates (dominant cost)

Compare+swap costs O(lg N + lg 1/ε)

Cost of alias preparation

Runs at ≈20Hz given N=100.

(an order of magnitude faster)

Part 5
Wrap-up

What we covered: section 3-D of arXiv:1805.03662

[...]

[...]

https://arxiv.org/abs/1805.03662

Preparation is a small part of a larger algorithm

This talk

N

lg N

1

Quantum
phase
estimation

Estimated costs of the overall algorithm

Contrast with previous work*, which had:
- Execution times in months
- Using hundreds of millions of physical qubits
- Assuming 10 nanosecond T gates instead of 150us T gates

*Reiher et al: "Elucidating reaction
mechanisms on quantum computers"

Key Takeaways

- Quantum algorithms start with a constant factor penalty of a billion (if not more).

- When a quantum subroutine is phase-insensitive, try porting classical methods.

- Random sampling methods seem to port particularly well.

- Alias sampling dominates bisecting search sampling yet is less well known.

Thanks for listening!

0
0

0
0

1
1

1
1

2
2
2

4
4

0

3
4
4
4

0
0

0
0

0
0

0

1
1

1
1

2
2
2

4
4

4
4

0
0

4

3

