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Goal: explain section 3-D of arXiv:1805.03662

[...]

[...]

https://arxiv.org/abs/1805.03662


Key ideas we'll cover

1. Cost of error corrected quantum computation

2. Preparing phase-insensitive superpositions == random sampling

3. Fast proportionate sampling

4. Putting it all together for savings!



Part 1
The cost of error corrected quantum 

computation



"""Real world""" parameters: dcode≈20, tcycle≈1us
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Basic error-corrected operations

this space
intentionally
left blank

initialization: cheap measurement: cheap

NOT gate: free Controlled-NOT: cheapSqrt(NOT) gate: cheap

Time



Not so cheap: Sqrt(Sqrt(NOT))

T state factory:

Time ≈ 150us

output

               Footprint
≈150K physical qubits

noisy T state injections



Quantum AND gate: expensive!

150us  +  150us   +  150us   + 150us    =  0.6ms

OR, NAND, NOR, etc 
are similarly expensive.



Wildly differing costs

Classical perspective on gate costs Quantum perspective on gate costs

FullAdder takes a half millisecond.FullAdder isn't even a whole instruction.



Another cost: reading data under superposition

- RAM takes O(N) space to store.

- N AND gates is expensive, but N logical qubits are even more expensive.

- Instead of storing data in qubits, hardcode it into a circuit ("QROM").

- QROM circuit needs AND gates.



Reading data under superposition: QROM circuit

Encode data into 
presence/absence of 
CNOT targets.

Iterate over possible 
index values.



Reading data under superposition: Expensive!

Video games render 
frames faster than we hope 
to do QROM reads

Note: uncomputing AND is ~cheap

QROM query over N 
values: N-1 AND gates

+3
+1

+2
+1

total=7N=8



Part 2
Preparing quantum states



The Preparation Problem
Given precomputed coefficients for a superposition, prepare such a superposition



Previous Approach
Set ON-vs-OFF proportion of a qubit just right with a precise rotation.

Conditioned on first qubit, set another qubit's ON-vs-OFF proportion just right.

Etc.



Cost of Previous Approach

Uses N-1 precise rotations.

Cost of precise rotation ≈ 12 AND gates. (≈50 T gates)

Roughly 3/4 of a second at N=100.



You were asked to prepare a superposition:

But if its usage is insensitive to phase error, you can prepare this instead:

i.e. just get the probabilities right:

Key insight: sometimes junk is okay



Key insight: sometimes junk is okay
Context: prepared superposition is only used as a control



Key insight: sometimes junk is okay

entanglement

phase error cancels against
inverse operations
during uncompute



Example: Preparing

Step 1: What's the
probability distribution?

Step 2: Create a
classical sampling
method.

Step 3: Quantum-ify.

uniform sample 
             
uniform superpositionu = uniform_random()

return u**2



Part 3
Sampling hard-coded probability distributions



Common step in genetic algorithms

Given: a list of items with fitnesses

Goal: sample items with twice as much fitness twice as often

Fitness proportionate selection

a b c ed

fd=1

fe=5

fc=3

fb=4

fa=7

0 20

fd=1 fe=5fc=3fb=4fa=7



Common Fitness-Proportionate Selection Methods
https://jbn.github.io/fast_proportional_selection/

Classical Sampling Cost

Linear Walk O(N)

Bisecting Search O(lg N)

Stochastic Acceptance O(pmax N)

0 20

fd=1 fe=5fc=3fb=4fa=7

https://jbn.github.io/fast_proportional_selection/


Common Fitness-Proportionate Selection Methods
https://jbn.github.io/fast_proportional_selection/

Classical Sampling Cost Quantum Preparation Cost

Linear Walk O(N) O(N lg(1/ε))

Bisecting Search O(lg N) O(N lg(1/ε))

Stochastic Acceptance O(pmax N) Not Reversible

Search trees don't help quantum cost. Under superposition, you must 
do the operations for every path.

https://jbn.github.io/fast_proportional_selection/


Common Fitness-Proportionate Selection Methods
https://jbn.github.io/fast_proportional_selection/

Classical Sampling Cost Quantum Preparation Cost

Linear Walk O(N) O(N lg(1/ε))

Bisecting Search O(lg N) O(N lg(1/ε))

Stochastic Acceptance O(pmax N) Not Reversible

Alias Sampling* O(1) O(N + lg(1/ε))

*Walker 1974: "New fast method for generating discrete 
random numbers with arbitrary frequency distributions" 

https://jbn.github.io/fast_proportional_selection/


Alias sampling: repacking histograms
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Pick initial item uniformly at 
random, then probabilistically 
switch to an alternate item.



How to repack a histogram
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How to repack a histogram
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How to repack a histogram
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How to repack a histogram

0

0

0

0

0

1

1

1

1

3

3

3

4

4

0

0

3

S
O
L
V
E
D

S
O
L
V
E
D

4

4

4
Average

It's okay to undershoot 
the average when 
donating



How to repack a histogram
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How to repack a histogram
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How to repack a histogram
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Repacking costs

Linear time using Vose's algorithm

Doesn't affect runtime of quantum algorithm (classically precomputed)

All approximations happen here. Sampling adds zero additional error!
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Part 4
Putting it all together



Using alias sampling to prepare a superposition
Classical Sampling

def alias_sample(alternates,
                             keep_weights,
                             precision):

    # Pick an item uniformly at random.
    n = len(alternates)
    k = randint(n)

    # Look up alternate item and keep chance.
    alt = alternates[k]
    keep = keep_weights[k]

    # Potentially switch to alternate item.
    threshold = randint(2**precision)
    kept = threshold < keep
    return k if kept else alt

Quantum Preparation



Preparing a uniform superposition costs O(lg N + lg 1/ε)

QROM lookup uses N-1 AND gates (dominant cost)

Compare+swap costs O(lg N + lg 1/ε)

Cost of alias preparation

Runs at ≈20Hz given N=100.

(an order of magnitude faster)



Part 5
Wrap-up



What we covered: section 3-D of arXiv:1805.03662

[...]

[...]

https://arxiv.org/abs/1805.03662


Preparation is a small part of a larger algorithm

This talk

N

lg N

1

Quantum
phase 
estimation



Estimated costs of the overall algorithm

Contrast with previous work*, which had:
- Execution times in months
- Using hundreds of millions of physical qubits
- Assuming 10 nanosecond T gates instead of 150us T gates

*Reiher et al: "Elucidating reaction 
mechanisms on quantum computers"



Key Takeaways

- Quantum algorithms start with a constant factor penalty of a billion (if not more).

- When a quantum subroutine is phase-insensitive, try porting classical methods.

- Random sampling methods seem to port particularly well.

- Alias sampling dominates bisecting search sampling yet is less well known.



Thanks for listening!
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